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The hydrodynamic forces and couples that act on two spherical particles in slow 
motion through a quiescent fluid are determined as functions of the relative 
configuration of the particles from the solution of the Stokes equation for the 
motion of the fluid in the vicinity of the particles. General formulae that relate 
the translational and rotational velocities of the particles to the ratios of their 
radii a = az/al and net densities I = (pz -p)/(p, - p)  are obtained, as are asymp- 
totic forms for the velocities in the limiting cases of very large and very small 
interparticle separation. Relative trajectories of the particles when they move 
solely under gravity and their own interaction are calculated for several values 
of I and a. A particularly interesting feature of the results is that, for certain 
ranges of values of I and a, trajectories of finite length and trajectories having 
the form of closed periodic orbits may occur. 

1. Introduction 
The motion of particles through fluid media under the combined action of 

gravitational forces and hydrodynamic interaction is an important aspect of a 
number of problems in suspension and aerosol mechanics. Settling velocities of 
suspensions, efficiencies of spray scrubber devices for removing particulates from 
gas streams and rates of agglomeration of aerosol particles in the atmosphere all 
depend on the nature of relative motion of particles in suspension. Previous 
studies of this problem have dealt with the interaction of two spherical particles 
of equal density, their relative motion being caused by a difference in size. In 
this paper the combined effects of unequal size and density on the motion of two 
spherical particles will be examined. 

Several simplifying assumptions are made in the analysis presented here. 
The ambient fluid is taken to be incompressible and Newtonian; the fluid is 
assumed to be unbounded and to be a t  rest far from the particles. The particles 
are taken to be rigid and sufficiently small that their inertia is negligible in 
comparison with the pressure and viscous forces exerted on them and that 
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FIGURE 1. Co-ordinate geometry and notation. 

inertial forces in the fluid are everywhere small compared with local viscous forces. 
When the clearance between the particles is of the order of the particle radii, the 
latter condition is met when the translational Reynolds numbers 

Rei = aiuia)pplp 

of the particles based on their Stokes terminal velocities u;") = $(pi - p )  atg/p 
are much less than unity. Here a$ and pi denote the particle radii and densities, re- 
spectively, p and p are the viscosity and density of the fluid and g is the magnitude 
of the gravitational acceleration. However when the particles are close together 
the time and length scales of the fluid motion in the gap between them, being 
proportional to the clearance, become very small, so it would appear that the 
condition of negligible inertial forces in the fluid might place additional restric- 
tions on the Reynolds number. That this is not the case will be shown later in 3 3. 

Under these conditions the steady-state velocity and pressure fields v(x) 
and p(x) in the fluid satisfy equations of continuity and motion of the forms 

v . v  = 0, pv2v = op, ( l . l a ,  b) 

together with the boundary conditions of no slip on the particle surfaces and 
no motion a t  infinity. Let the instantaneous position of the centre of the particle 
of radius a2 and density p2 be x,, and that of the particle of radius a, and density 
p, be x, + r, as shown in figure 1. Further, let ui and wi be, respectively, the in- 
stantaneous translational and rotational velocities of particle i, and let ri be the 
position vector of any point relative to the centre Oi of the particle. The boundary 
conditions are then 

v = u i + w i x r i  on ri=ai  ( i =  1 , Z )  (l .2a) 

and v - t o  as ~x-x,(+oo. ( 1 . 2 b )  
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By virtue of the linearity of the Stokes equation and boundary conditions 
that relate to fluid and particle velocities, the analysis of the flow problem 
may be separated into two problems: (i) the axisymmetric translational motion 
of the particles along their line of centres and (ii) their asymmetric transla- 
tional motion along and rotational motion about a direction perpendicular to the 
line of centres. An exact solution for the axisymmetric translational motion was 
first given by Stimson & Jeffery (1926) for two spherical particles moving with 
the same velocity along their line of centres. Using bipolar co-ordinates, they 
obtained the solution in the form of an infinite series, which converges rapidly 
except when the particles are close together. Calculated values of the forces 
were reported only for equal-sized spheres. With slight modification of the 
boundary conditions they used, the forces may also be calculated for the general 
case when two unequal spheres move with different velocities. Dean & O’Neill 
(1963) and O’Neill ( 1 9 6 4 ~ )  have extended the use of bipolar co-ordinates to 
asymmetric problems. This technique has been used by O’Neill (19643) and 
independently by Goldman, Cox & Brenner (1966) and Wakiya (1967) to solve 
the asymmetric problem of two equal spherical particles translating along and/ 
or rotating about axes perpendicular to their line of centres. For unequal spheres 
calculations have recently been reported by Davis (1969) and O’Neill & Majum- 
dar (1970a, 3). Here also the solution is expressed as an infinite series; however 
in these instances the coefficients of the various terms cannot be expressed in 
terms of known analytical functions but rather take the form of a solution of an 
infinite set of difference equations. As with the other cases mentioned, the rate of 
convergence of these series decreaseswith smaller clearance between the particles ; 
the series, in fact, diverge if the particles are in contact. The solution in bispherical 
co-ordinates of the Stokes equation for the fluid motion in the vicinity of spherical 
particles moving in a linear shear flow has been discussed by Curtis & Hocking 
(1970), Davis (1971) and Lin, Lee & Sather (1970). The last of these solutions, 
which treats the general case of arbitrary fluid and particle motions, was used in 
making the calculations of the present study. 

Under conditions of negligible particle inertia the equations of motion of the 
particles are obtained by equating both the total forces and total couples exerted 
on the particles to zero. The forces exerted on particle i are the hydrodynamic 
force Pi and the gravitational and buoyancy forces, hence we have 

Fi++2(pi-p)g = 0, (1.3) 

where g is the gravitational acceleration. If the distribution of mass within the 
particles is uniform, the centres of buoyancy and mass coincide. Then no external 
couples act on the particles, so for negligible particle inertia the hydrodynamic 
couple Ti (about 0,) satisfies 

Ti = 0. (1.4) 

From (1.1)-(1.4) it is clear that the translational motion of the particles lies 
in the plane of the vectors r and g and the only non-vanishing component of 
their rotational velocities is that about the direction normal to the plane of r and 
g. Let us denote by u, and v,, respectively, the components of ui along the line 
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of centres and perpendicular to it in the plane of the motion, and by F; and 3': 
the corresponding components of the hydrodynamic force Pi. Also let wi and Ti 
be the components of a, and T, in the direction normal to the plane of the 
motion. Then (1.3) and (1.4) become 

and Ti = 0, (1.5b) 

where 0 is the angle between r and - g. 
Since the hydrodynamic force and couple are linear functions of the fluid 

velocity v, it follows from (1.1) and (1 .2)  that they must be linearly related also 
to ui and at. The relations between these quantities for particle i are (Brenner 
1963, 1964a, b ;  Brenner & O'Neill 1972) 

and 

2 

j=l 
3'; = - Gnpa, 2 Bijuj, 

2 

j = 1  
P: = - 6npai C (A, vj + a, Cii w j )  

. 

( 1 . 6 ~ )  

( l .6b)  

( 1 . 6 ~ )  

The resistance coefficients A,,, B,,, Cij and Dij are non-dimensional scalar 
functions of only the ratio a = a,/a, of the radii of the particles and the distance 
t = r/a, between the particle centres. Because of the dynamical equivalence of the 
two problems that are obtained when the particles are interchanged, the resis- 
tance coefficients satisfy the following useful relations : 

ta-l) = 1C2,(a, t) ,  ta-l) = K,,(a, t), (1.7a, b )  

ta-l) = aLz2(a , t ) ,  LI2(a-l, ta-l) = aL,,(a, E ) ,  ( 1 . 7 ~ 4  

where Kij  denotes either Aij or B,, and L,, denotes either Cij or Dij. By means of 
these relations values of the resistance coefficients are known for all a if we have 
values for them for O c a < 1. 

Not all of the sixteen resistance coefficients that appear in (1.6) are indepen- 
dent because of the axial symmetry of the two-sphere system about the line 
of centres. The number of independent coefficients is, in fact, thirteen, the other 
three being related to them by 

A,, = aA,,, B,, = aB,,, DI2 = a2D,,. (1.8a, b, c )  

The equations of motion of the particles that result when (1.5) is combined 
with (1.6) can be inverted to give expressions for the components u,, vi and wi 
of the particle velocities in terms of the particle radii and densities and the co- 
ordinates t and d .  These expressions can be put into non-dimensional form by 
using a,, the radius of the larger sphere, as the unit of length, uim), the terminal 
Stokes velocity of the larger sphere, as the measure of the translational velocity 
and uim)/al as the characteristic rotational velocity. The expressions for the non- 
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dimensional velocity components Ui = ui/u$*), Vi = vi/ui"' and Ri = alwi/u$") 
involve only two parameters, a and I = ( p 2  - p)/(pl - p )  : 

(1.9a) 

(1.9b) 

= K/sin 8 and Qi = Q,/sin 8. Using the interchange 

Ol = U~/COS e = (13,~ - I~~B,,)/(B,,B,, - a-113:~) 
and 

with similar equations for 
relation (1.7), we obtain the following: 

0, = U,/COS 8 = (Ia2B11 - a-1B,2)/(B11B22 - a-lB;,) 
A 

and 

The relative motion of the particles is conveniently described in terms of 
particle trajectories, which express how the non-dimensional separation varies 
with the polar angle 0. To determine the trajectories we resolve the particle 
velocities in spherical co-ordinates (&f?,$) with the origin a t  the centre of 
particle 2, as depicted in figure 1.  The translational velocity of the centre of the 
ith particle may be expressed in the form 

(1.11) 

For the non-dimensional velocity of particle 1 relative to that of particle 2 we 
have 

u12/u$"' = (ul-u,)/u$m) = - O12(5 ,a ,~)  cosee,+Qf,a , I )s inee, .  (1.12) 

The centre of the particle of radius a, represents a ' material ' point which moves 
in the plane of e, and e, with velocity u12. This point does not move with a fluid 
element except for t -+ 00; therefore the divergence of u12 is different from zero 
for all finite 5. 

The kinematical equations determining the paths of the spheres and hence 
the change in relative configuration are &/at = u12, with u,, given by (1.12). The 
trajectories of particle 1 relative to particle 2 are the integrals of the two scalar 

ui/uia) = - Oi(t, a, I )  cos e e, +E(t, a, I )  sin o e,. 

equations 
dE/dr = - O,,(g, a, I) cos e ( 1 . 1 3 ~ )  

and de/dr = t-1G2(t, a, I )  sin 8, (1.13 b)  

where 7 = (a,/uim)) t is the dimensionless time. By eliminating r from these equa- 
tions we obtain 

sin elsin e, = exp ( -1 s2 at ) ,  
5.5 u,, 

(1.14) 

where (to, 8,) gives an initial relative position of the particles and hence serves to 
designate the particular trajectory. 

2. Far-field asymptotic forms for the particle velocities 
When the distance r between the centres of the two particles is large com- 

pared with two radii a, and a2, the hydrodynamic forces and couples exerted on 
the particles can be approximated by asymptotic forms in inverse powers o f t .  
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Expressions for the forces on two unequal particles translating along their line 
of centres have been evaluated to terms O(6-5) by Happel & Brenner (1965, 
chap. 6) using the method of reflexions. Wakiya (1957) has solved the problem of 
two spherical particles which are free to rotate as they translate perpendicular 
to their line of centres by a similar technique.? Equating these expressions with 
the appropriate external forces in ( 1 . 5 ~ )  and solving for the velocity components 
results in the following expressions for the velocities of two widely separated 
particles subjected to gravitational forces : 

h u, = 1 + # l a 3 p  - jIa3( 1 + a2) 6-3 - yu3,-4 + 0(<-6),  

v, = i + p 3 6 - ; - 1 +  ga3( 1 + a2) 6-3 + o(.p) 
= Ia2 + $6-1 + i( 1 + u2) 6-3 + o( 6-6). 

(2.1a) 

( 2 . 1 4  

and ( 2 . 1 4  

The expressions for the rotational velocities of the particles under couple-free 
conditions (T, = T2 = 0) are 

A 

u, = Ia2 + $6-1- $( 1 + a2) 6-3 - 151a3&4 4 + o(6-6) (2 . lb)  
h 

A a1 = -Q&U[-~+&U(I + g ~ + ~ 2 ) 6 - 5 ]  +P2($a[-2+g;a26-4) -to(6-6) ( 2 . 2 4  

a2 = - ~ ( $ ( - 2 + + < - 4 )  + v , [ & ~ 6 - 3 + + ~ ( 1  + g ~ + ~ z ) g - 5 1  +o(p). ( 2 . 2 b )  

and 
A h h 

It is easy to show that these results are consistent with the interchange relations 
(1.10). 

3. Near-field asymptotic forms for the particle velocities 
Analytic asymptotic forms for the resistance coefficients may also be found for 

cases where the distance between the centres of the two spheres approaches the 
limiting value a, + u2. It has been found necessary to use these asymptotic forms 
in order to be able to describe the motion of the spheres when they are very close 
to each other because, as already noted, the series forms of the exact solutions 
either fail to  converge or converge too slowly for computational convenience. 
Because of the singular nature of the formal solutions in the limit r -+ a, + u2, 
the procedure usually adopted (see for instance O’Neill & Stewartson 1967; 
Cooley & O’Neill1968) is to match asymptotic expansions of the solutions for the 
inner region of strong shear flow in the small gap between the particles and the 
outer region away from the gap where the velocity gradients are relatively weaker. 
For our purposes, however, the complete matched asymptotic solution is not 
required, and we can use instead the partial solutions obtained by Cooley & 
O’Neill (19693) for the problem in which a sphere of radius u1 approaches a 
stationary sphere of radius a2 with constant speed along the line of centres 
and O’Neill & Majumdar (39703) for the case in which a sphere of radius a, 
translates along and rotates about the direction perpendicular to the line 
joining its centre to  that of a stationary sphere of radius u2. I n  both cases only 
the terms of the asymptotic expansion of the solution for the inner region 

-f These results may be found also in chapter 6 of Happel & Brenner (1965). 



Interaction, of two spheres moving under gravity 42 3 

were derived. However, as they have shown, this is sufficient to  describe com- 
pletely the singular nature of the forces and couples in the limit as the dimen- 
sionless clearance 6 = - (1 +a) tends to zero, provided that a matching outer 
solution exists. The contributions to the forces and couples from the flow in the 
outer region, which are required in order to obtain their non-singular parts, 
must be O( 1). Although these contributions may, a t  first, seem insignificant for 
very small gap widt,hs, it is evident that they are of the same order of magnitude 
as the gravity and buoyancy forces and hence must be included in the determina- 
tion of the particle motions. In lieu of calculating the contributions of the outer 
solution by continuing the singular perturbation analysis, an estimate of them 
can be found by matching the asymptotic expansion of the inner solution with 
the numerical data obtained from the series solution a t  some small value of 6, 
as has been suggested by Goldman, Cox & Brenner (1967)t and O’Neill & 
Majumdar (1970b). The expressionsfor thevelocitycomponents, as welater show, 
may then further be improved by making use of the exact solutions for two touch- 
ing spheres of Goren (1970)) Cooley & O’Neill(1969a) and Nir & Acrivos (1973). 

Using the result of Cooley & O’Neill(1969 b) for the singular part of the forces 
acting on the spheres when one of them moves along the line of centres and 
the other is stationary and the interchange relations (1.7) together with the 
symmetry relations (1.8)) we obtain the following asymptotic forms for the resist- 
ance coefficients when 6 < 1 : 

B,, = -PCS, a)  + Co1(a), Bl, = P(8, a) +Go&) (3.1 a, b )  
and B,, = - a-lP(6, a) + C03(a), ( 3 . 1 ~ )  

where 

and the Coi(a) are contributions O( 1) which are obtained from the matching of 
the inner and outer solutions. When the spheres are in contact, u1 = u2 = u 
and the forces on each sphere given by (1.6) become 

F; = - 6n,ualuf,, Pi = - 6npa1uf2 (6 < 1))  (3.3a, b )  

where fi = Col+Co, and f, = a(Co, +Co3). Values of fl and f, were calculated for 
a range of values of a by Cooley & O’Neill (1969a) and by Goren (1970). Com- 
bining (1.5) and (1.6) with (3.1) and solving for Ul and U,, we find that the dimen- 
sionless relative velocity U,, is given by 

P(6, a) = a2( 1 + a)-, S-l+ Q( 1 + a)-3 a( 1 + 7a + a,) log 6-l (3.2) 

u,, 2 - Ia3f1-f2coso (6 < 1))  P(fi +f,) (3.4) 

where terms O( 1) in the denominator have been neglected. The expressions for the 
non-dimensional velocities of the individual spheres are, to the same order of 
accuracy, 

C O S O  (6<  1). 
1 + 1a3 u1 21 U, 21 - 
fl + f z  (3.5) 

Calculated values of 8, and 8, for a = 0.2 and 0.5 and for several values of I are 
given in table 2. 

f These authors have found that the slopes of the asymptotic and the exact resistance 
coefficients vs. the dimensionless gap width 8 are in good agreement for a range of very 
small values of 6, and thus may be used to evaluate the leading term of the outer solution. 
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Resistance 
coefficient 

= Ln log 6-1 + 1, 

A11 
A12 

Cll 
c21 

A22 
c, 2 

c*2 

D11 
Dl2 
Q2 

Ln(a) 
L, = i%a(i+a)-3(2+a+2a2) 
L, = -L ,  
L ,- - ---( I', 1 + ~ ) - ~ ( 4 + a )  
L, = -L,(u-l) 

L,, = a-1 L, 
Lll = ---I L, 
L,, = a-lL,(a-') 
L,, = $(l+a)- '  
Ll, = w,, 
L20 = L15 

TABLE 1. Near-field asymptotic forms for the resistance coefficients 

With these results we can examine the restrictions imposed on the magnitude 
of the Reynolds number when 6 < 1 by the condition that inertial forces of the 
fluid motion in the gap be much smaller than the viscous forces. The length and 
time scales of the motion in the gap are a,& and a16/u,,, respectively, so the 
ratio ofinertial to viscous forces is a, Gpu,,/,u. The condition that inertial forces are 
negligible can be written as Re, Q (Ul26)-l) which is O ( P )  from (3.4) and (3.2). 
Consequently if Re, < 1 inertial forces are everywhere negligible compared with 
the viscous forces for all configurations of the particles. 

In  the case of motion perpendicular to the line of centres O'Neill &I Majumdar 
(1970 b ) t  have shown that each resistance coefficient in ( 1.6) exhibits alogarithmic 

singularity of the form L,(a)logS-l+l,(a). 

Analytical expressions for the L,(a) of each of the resistance coefficients are given 
in table 1. Values of the l,(a) may be estimated by means of the exact computed 
coefficients in the manner described above. By virtue of the symmetry relations 
only ten of the resistance coefficients are independent. 

Substitution of the asymptotic forms of the resistance coefficients given in 
table 1 into (1 .6) gives, after some cumbersome algebra, the following results for 
the velocities K and Q+.: 

hi, (log 6-1)' + '22 log S-l+ '32 V, =%sine  = sin0 (6Q l), ( 3 . 6 b )  
(log 6-1)2 + A2 log S-l+ A3 

A h ,. 
aQl = ai2,sin 0 = (y, + y2T{ + y3V2) sin 8 (6 Q 1) (3.7a) 

and aQ, = an,sinB = (y4-y5E-y6&)sin0 (6  Q 1). (3 .7b )  

The coeficients yi, A, and hij are functions of the coefficients L, and I, and the 
parameters a and I.$ Taking the limit of V, and V, as 6+0 in these expressions, 

Results for two equal spheres have been given by Goldman et al. (1967), O'h'eill(l969) 
and by Zia, Cox &Mason (1967). 

$ Copies of a summary of the relations among the coefficients are available on request 
from either the editor or the authors. 

A h 
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G*) 
FIGURE 2. Notation used for description of motion of two touching spheres. All quantities 
are dimensionless. The forces Fig" and F F  act a t  Oc in the direction of P, and the couples 
T i g g  and T",B% act in the direction of s2. 

we see that A,, and A,, are the exact values of and p, when the gap width equals 
zero, that is, Alj = pi") = limq for j  = 1 and 2. 

It is of interest to examine the relations between V,, V,, SZ, and SZ2 in the limit 
IS  -+ 0 to see what conclusions can be obtained for the motion of spherical particles 
in contact. From (3.6) and (3.7) 

6+0 

and 

SZ, = SZ, = 0 when IS  = 0 (3.8) 

ViTJ-  ViT) = (1  +a)  SZ when S = 0. (3.9) 

Now, since SZi is a free vector which may be displaced parallel to itself, it is 
obvious that there is no relative rotation between the touching spheres and that 
SZ is the common angular velocity of the two-sphere aggregate about the instan- 
taneous axis of rotation. Consequently, the difference V, - V, between the trans- 
lational velocities of the particle centres is solely due to the rigid-body rotation 
of the pair. This provides a rigorous proof of the fact that two touching spheres 
moving under gravity in an inertialess quiescent viscous fluid undergo a rigid- 
body rotation. Similar behaviour is found also when an aggregate of two touching 
spheres is freely suspended in a linear shear flow, as has been shown both by the 
analysis of Nir & Acrivos (1973) and by the observations of Mason and coworkers 
(Bartok & Mason 1957; Zia et al. 1967). 

We can use the results in the paper by Nir & Acrivos to determine exact limit- 
ing values for % and when IS  -+ 0 in order to improve the results (3.6) and 
(3.7).  Because of the linearity of the Stokes equation of motion, one can write 
the total hydrodynamic force Fig"" in the direction perpendicular to the line 
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of centres of the two-sphere aggregate and the total hydrodynamic couple 
T i g g  about a point 0, (see figure 2) as 

P p  = - n-pa,u:"'(a, v + 6, n) (3.10) 

and T 2 g g  = - T ~ U ? U ; ~ ' ( ~ ,  V+p,Q),  (3.11) 

in which V and I2 are, respectively, the (dimensionless) translational and 
angular velocities of the aggregate relative to the point 0,, which is located along 
the line of centres a t  a distance a& from the point of contact towards 0,. The 
dimensionless distance and resistance coefficients a,, p1 and 6, are given in 
tables 1 and 2 of Nir & Acrivos as functions of the particle size ratio.? It should 
be noted that the point 0, represents in their work the location of the centre of 
rotation a t  which, in the absence of external forces on the agggregate, the trans- 
lational velocity component perpendicular to the line of centres exactly equals 
the corresponding component of the undisturbed field. I n  our case 0, is simply the 
point about which the resistance elements of the coupling and rotation dyadics 
are calculated. Now, the net external force on the aggregate in the direction per- 
pendicular to the line of centres of the particles is 

q g g  = -4 3n-u:(pl - p )  g( i +I$) sin 0 (3.12) 

and the external couple about 0, is 

(3.13) 

Equating the sums of the forces and couples acting on the aggregate to zero and 
solving for V and Q, we have 

(3.14) 

and Q = -6(al/31-8~)-1{(l -Ia4)a,- ( I  +.la3) (&,+al~)}sin0. (3.15) 

Since the aggregate is in rigid-body rotation, the translational velocities of the 
particule centres are 

( 3. I 6 a) 

and v p =  V-(u+C)Q ( 8 = 0 ) ,  I (3.166) 

from which the values in table 2 were calculated. These expressions are consistent 
with the result given in (3.9). 

V = - 6 (  alp1 - (( I +la3)  (pl + 6,c) - (I  -Ia4) &,}sin 0 

V y )  = V+(I-[)Q (6 = 0) 

4. Relative particle trajectories 
The principal results of this paper are the relative trajectories c(0) of two 

spherical particles as they fall (or rise) in a quiescent fluid. Because the trajec- 
tories are directly dependent on the relative velocity functions Ol2(6, a, I )  and 
c2(6, a, I), it will prove helpful to preface the description of the trajectories with 
a discussion of the velocity functions. These are displayed in graphical form in 

t In the paper by Nir & Acrivos, dimensional coefficients a,, b, and d, are used in- 
stead of a,, p1 and 8,. The relationship between the two sets of coefficients is m1 = u,/r,uul, 
p1 = b,/rpa; and S, = d,/rpu;, where uI is the radius of the larger of the two spheres. 
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I 

0 
1 
1.5 
1.68406 
2 
2.10188 
3 
4 
5 

0 
1 
2.5 
2.89379 
4 
4.56414 
6 

15 

For spheres in contact ( E  = 1 +a)  

o1 = d2 
0.953631 
1.072834 
1.132436 
1.154377 
1.192038 
1.204183 
1.311242 
1.430446 
1.549650 

0.997871 
1.005854 
1.017828 
1.020732 
1.029802 
1.034284 
1.045768 
1.117615 

a = 0.5 
ViT) 

0.927309 
1.016449 
1.061018 
1.077425 
1.105588 
1.114670 
1.194728 
1.283867 
1.373006 

p p  
0.713115 
0.904161 
0.999683 
1.034847 
1.095206 
1-1 14670 
1.286252 
1.477297 
1.668343 

Qg) 
0.2 14 194 
0.112288 
0.061335 
0.042578 
0*010382 
0~000000 

-0.091524 
- 0.193430 
- 0.295337 

a = 0.2 

0.982764 0.947294 0.035470 
0.990343 0.962644 0.027699 
1.001710 0.985669 0-016041 
1.004467 0.991253 0.0 13214 
1.013078 1.008694 0.004384 
1.017353 1.017353 0~000000 
1.028234 1.039394 - 0.01 1160 

For spheres far  apart (5 + 03) 

Ol,Vl + I, 02,g2 +1a2, O12,Vlz + 1-la2 

TABLE 2. Limiting values for the particle velocity functions 

figures 3 and 4, which show how o,, and R2 vary with [ for a = 0.2 and 0.5 
and for several values of the relative particle density I .  Several interesting 
features of these curves may be noted. For small values of I the functions o,, and 
R2, for a given value of a, are positive for all values of [ and increase monotonically 
from their limiting values when the spheres are in contact a t  [ = 1 +a, which are 
given in table 2. As I is increased a criticalvalue is reachedwhere (dO,,/d[)t=l+a 
equals zero. For larger values of I the limiting slope is negative, and i?,, itself 
is negative for a range of values of 6. The critical value of the relative density I?, 
which depends on the particle size ratio a, can be calculated from the values of fi 
andf, [cf. equations (3.3a, b) ]  given in the papers by Cooley & O’Neill (1969a) 
and Goren (1970). Differentiation of o,, in (3.4) with respect to [ and setting 
(d012/d[)5=l+a equal t o  zero gives 

Values o f Iy  for several values of a are given in table 3. As I is increased above I:, 
the range of values of [ (between 1 + a and [g,  say) for which o,, remains negative 
increases with I .  An estimate of the upper limit [g of the range is obtained from 
the three-term approximations of the far-field equations (2.1 a, b) ,  which give 

where K = ( 1  - Ia3)/( 1 -  Ia2) has values between 0 and 1. More accurate values, 
obtained fxom the calculations of ox,, are given in table 4for several ( I ,  a) pairs. 

I: =f21a3ffi. (4.1) 

[$ 2: +~[3-(1+a2) /[ ;~] ,  (4.2) 
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1.5 
- 1  I / // I 7 ,68406 - 
U'4 r 

- 0.4 1 1  
FIGURE 3. The relative velocity functions ol,([) 

andvl,,(E) for a = 0.5. 

Similar behaviour is found for the relative velocity function qz for the per- 
pendicular direction. As I is increased a second critical value IT, always greater 
than I," except in the limit as a+ 1, when both IF and I: equal unity, is reached 
a t  which qt changes from a monotonic positive-valued function to  one which has 
negative values for < in some range 1 +a  < < < 6;. Negative values of g2 first 
appear for < = 1 +a; consequently the critical values I: can be determined by 
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FIGURE 4. The relative velocity functions 7?&) and PI,([) for a = 0.2. 

equating the expression for pi*) - piT) obtained from (3.15) and (3.16) to zero. 
This gives 

(4.3) 

from which the values in table 3 were calculated. The upper limit 6; can also be 
estimated from the far-field forms of (2.1), which yield 

It is easy to see from (4.2) and (4.4) that 6: > 6; for all values of I and a such that 
Ia2 < 1. This is found to be the case also for the more accurate values of 6; 

g; = $ K [ 3 +  (1 +a2)@]. (4.4) 
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a-1 

co 
20 
10 
8 
6 
5 
4 
3 
2.5 
2 
1.5 
1.2 
1.125 
1.01 
1 

I: 
4.844 
4.20000 
3.64982 
3.42128 
3-12838 
2.86379 
2-57344 
2-19330 
1.95777 
1-68406 
1-36600 

1.09592 

1 

- 

- 

TABLE 3. Values of 1; and 1; 

1,. 
co 
- 

6.66060 

4.56414 

3.07743 

2.10188 
1.55857 
1.22281 

1.01103 
1 

- 

- 

- 

a I 6; 6; 
0.5 2 1-78227 t 

0.2 4 1.31632 t 
0.5 3 3.5378 2.01740 

0.2 5 3.0949 1.80303 

t Not applicable because 1 < 1: 

TABLE 4. Values of ,!$ and 6; 

obtained from the numerical calculations of q2 and given in table 4. The depend- 
ence of IF and I! on a is summarized in figure 5.t 

The hydrodynamic forces exerted on the particles when they move with 
equal velocity through a quiescent fluid can readily be determined from the 
resistance coefficients. When the particles move parallel to their line of centres 
with velocity u and separation [al, the force components I?; and Fi are given by 
(3.3). The dimensionless forces fl(g) and f 2 ( [ )  have been calculated by Cooley & 
O’Neill(l969a) for different relative sphere sizes. They find that the force f 2  on 
the smaller sphere is a monotonically increasing function as 5 varies from 1 +a  t o  
00. However, the force on the larger sphere is monotonic in [ only if a is less than 
a critical value, which they estimate to be about 0.7. For a 0.7, fl exhibits a 
minimum a t  some value of Elarger than 1 +a. Identical behaviour is found for the 
hydrodynamic forces exerted on the particles when they move under couple-free 
conditions perpendicular to their line of centres with the same velocity v. The 
dimensionless forces g, and g,, defined by 

Ff = - 6n,ua,vgl, Fg = - 6n;ua,vgZ 
Tl = Tz = 0,  

t The individual particle velocity functions oi and are affected in a similar manner by 
the value of I. It is found from the calculations (for a = 0.5) that ol is a monotonic function 
of E, while is monotonic for I = 0 and 1.5 but exhibits maxima for I = 2 and 3. Similarly, 
p2 is monotonic, while vlis monotonic when 1 = 0 but has maxima when I = 1.5, 2 and 3. 
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0 I .O 

a 

43 1 

FIGURE 5. Dependence of I f  and I: on a. 

are shown as functions of c in figures 6(a)  and (b).  We note that the force g ,  
on the smaller sphere increases monotonically with 6, while g1 is monotonic 
only if a is below about 0.7. For a 7 0.7, g ,  also passes through a minimum a t  
some separation greater than that a t  contact. 

As is to be expected from the preceding discussion, the shape C(0) of the rela- 
tive particle trajectories is strongly affected by the relative particle density. 
For each value of the sizeratio afour types of trajectories are obtained, depending 
on the value of I .  Figure 5 shows these four regions on a plot of Ia2, the ratio of 
the terminal velocities of the particles moving by themselves in the ambient 
fluid, vs. the particle size ratio. 
(a) 0 < I < I,". I n  this case both OI2 and q2 are positive-valued functions of 

6. Hence, from (1.3) dC/dr c 0 and de/dr > 0 for 0 < 0 < Qn, so the larger par- 
ticle moves downward relative to the smaller one, passing around and below it. 
The trajectories extend to 5 = m both above and below the smaller sphere and 
are symmetric about 0 = in. Some sample trajectories for this case, calculated 
for a = 0.5 and I = 1.5 from (1.14)) are shownin figure 7(a). 

( b )  I: < I < I!. For I between I: and I! only E2 is positive for all values of 6. 
The relative velocity 012 along the line of centres is negative for 1 f a  < 6 < 6; 
and positive for 5 > c;; hence for 0 < 0 < Qn, diJdr is positive for c < 6; and 
negative for 6 > 6;) while d01d.r is always positive. The trajectory plane of ((0) 
divides, therefore, into two parts according to whether 6 is greater or less than 
,$. No trajectories cross the curve 6 = c; (since d</dr = 0 there). Outside this 
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E 

0.5 r 

0.3 

Q2 

0-2 

0.1 

0 

FIUURE 6. The force on (a )  the larger and ( b )  the smaller of two spheres 
moving perpendicular to their line of centres. 

curve the trajectories extend to infinity in both directions as in (a) ,  the larger 
sphere again moving downward relative to the smaller one. The trajectories 
inside the curve 5 = 6$ begin at  8 = 0 and 6 = 1 + a ;  as the larger sphere 
moves around the smaller one the centre-to-centre distance 6 increases to a 
maximum value a t  6 = in, whereupon i t  decreases in a symmetrical fashion un- 
til the particles reach a stationary configuration in which they are in contact 
with the smaller one directly above the larger one, i.e. 6 = T and 5 = 1 f a .  The 
duration of trajectory, denoted by T ,  is infinite because the hydrodynamic forces 
exerted on the particles become infinite as the clearance approaches zero, while 



Intcraction of two spheres moving under gravity 433 

+ 

2” 
FIGURE 7. Relative particle trajectories [(e) for a = 0.5 and (a )  I = 1.5, (b )  I = 2 

(r;T; = 1.78227) and (c) I = 3 (EE = 3.5378, 6; = 2.0174). 
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the gravitational force which drives the motion is always finite. This property of 
the trajectories is reflected in the formula for T obtained from the integral of 
( 1 . 1 3 ~ )  using (1.14): 

(4.5) 
where trnax(go, 0,), the maximum value of < (at  0 = &n), is obtained from 

tmsx 9 
= Iogsino,. 

It is evident from (3.4) and (3.2) that the integral in (4.5) diverges. Sample tra- 
jectories for this case calculated for a = 0.5 and I = 2 are displayed in figure 

( c )  IT," < I < a-2. Again there are two kinds of trajectories: those in the space 
< > [&, which extend to infinity both above and below the smaller sphere, and 
those confined to the region 1 + a < 6 < <:. However, in this case the finite tra- 
jectories are of a different character because g2 changes sign from negative to 
positive as t becomes greater than <;. For < < <; and 0 < 8 < tn, d0ldr is 
negative so 0 decreases with time while <increases. Hence < is a minimum (equal 
to trnin, say) a t  0 = in. The trajectory that passes through g = Cmin and 0 = in 
continues in time with 8 decreasing and < increasing until < = <:, whereupon 0 
begins to increase along with < until 0 = in. Because of the symmetry of the 
motion about 0 = tn, the trajectory continues around, returning to the point 
< = cmin and 0 = in. The trajectories are thus closed orbits around which the 
larger sphere moves relative to the smaller one in a cyclic fashi0n.t The period of 
the motion, which is finite in this case, is given by (4.5), but with the lower limit 
of 1 + a replaced by tmin (to, O,), which is determined from 

7 ( b ) .  

Typical trajectories for this case calculated for a = 0.5 and I = 3 are shown in 
figure 7 ( c ) .  

( d )  I > a-2. Both Ol2 and e2 are negative for all < > 1 +a, so dt/Ildr > 0 and 
d0/dr  < 0 for 0 < 0 < Qm. Thus, all trajectories extend to infinity in both direc- 
tions, but the direction of the motion is now upward, reflecting the fact that the 
relative density of the smaller sphere is so large that it always falls faster than 
the larger sphere. 

The existence of closed orbits in case ( c )  is reminiscent of a similar characteristic 
of the relative trajectories of neutrally buoyant spherical particles in laminar 
shear flows. Under conditions of negligible fluid and particle inertia and no ex- 
ternal forces or couples or Brownian effects, Batchelor & Green (1972u, b )  have 
shown analytically that there exists around each particle a region of closed 
trajectories along which the other particle moves in a cyclic manner. Theexistence 
of orbiting trajectories for pairs of spherical particles in linear shear flows had 

t The trajectories as seen by a stationary observer are not closed, of course; they only 
appear so to an observer moving with the smaller sphere. 
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previously been established by the observations of Darabaner & Mason (1967). 
Because there has apparently been no experimental demonstration of closed 
orbits for the case at hand, we made some qualitative observations of a nylon 
sphere and a smaller glass sphere falling in castor oil. The value of a was approxi- 
mately 0.38, and that of I was about 6.6, which is between I: N 2.7 and a--2 -N 7 .  
Periodic motion of the larger sphere in the 'no-escape' region near the smaller 
sphere was clearly evident. 

One of the important problems in particle mechanics is the prediction of 
rates of collection of small particles by larger ones as they fall through a viscous 
medium. Since the hydrodynamic force resisting the approach of the particles 
towards each other becomes infinite as 6 3 0, contact evidently is never achieved. 
Observations show, however, that contact resulting in permanent capture does 
occur, apparently because electrostatic forces, slip flow and/or other effects 
become significant as 6 becomes very small. In order to allow for these effects 
in model studies of the collection process, capture is said to occur whenever 6 
reaches a small non-zero value 13,. The quantity of interest in these studies is the 
collection efficiency E of the large particle, defined as 

where a, is the radius of the large particle and R is the radius of the circle far 
above the large sphere through which the centre of the small one must pass in 
order for capture to occur. There have been several investigations of this problem, 
but none has taken account of the effect of unequal particle densities. The present 
work has shown that the particle densities can in certain cases have a decisive 
influence on the possibility of collection. In  particular, if the values of I and a 
of a pair of particles belong to either case ( b )  or (c) and the particles are initially 
separated by a distance [ > [c ,  then they will never result in capture. Around 
each sphere there is a spherical region of radius 6; ( I ,  a) which spheres outside 
cannot penetrate and from which spheres inside cannot escape. The size of this 
region can be very large; for Ia2 = 1, corresponding to equal terminal velocities 
of the particles, it  is infinite. As an illustration of the consequence of this result 
consider the use of a spray of IOpm water droplets to remove smaller dust par- 
ticles having a density of 3glc.c. from a gas stream. From table 3 or figure 5, 
IF = 3 corresponds to a N 0.18; thus only particles smaller than about 1.8pm 
can be collected in this case. 

Finally, the results presented here can be used to determine the effect of hydro- 
dynamic interactions during particle encounters on sedimentation rates in sus- 
pensions. Batchelor (1972) has developed a procedure for calculating the con- 
tribution of two-sphere encounters to the sedimentation velocity of spheres 
and has evaluated the contribution for a suspension of spheres of uniform size 
and density. In  order to obtain the average velocity of the particles the two- 
particle configuration probability function P(r, t )  must be known. Since equal 
spheres fall at the same velocity for all separations r, configurations remain con- 
stant with time and hence are the same as a t  some initial time. Thus if the initial 
configuration in the suspension is random, P(r, t )  is a constant independent of r 
and t. Such is not the case for suspensions of dissimilar particles. The relative 

28-2 
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motion of the particles and the possibility of finite and closed trajectories will 
have a profound effect on the form of P(r, t )  and consequently on the determina- 
tion of the sedimentation rate. This problem will be taken up in a later report. 

The work describedin this paper was carried out while the authors were visiting 
research fellows in the Department of Applied Mathematics and Theoretical 
Physics a t  the University of Cambridge. During this time one of us (E. W.) was 
supported by the Yad Avi Ha-Yishuv fund and the other (N. F. S.) by a fellow- 
ship from the National Science Foundation. The authors are indebted to Pro- 
fessor G. K. Batchelor and Dr E. J. Hinch for many helpful discussions during 
the progress of this work. 
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